Magnifying Glass
Search Loader

Vladimir Vovk & Alex Gammerman 
Algorithmic Learning in a Random World 

Support
Adobe DRM
Cover of Vladimir Vovk & Alex Gammerman: Algorithmic Learning in a Random World (PDF)



(4.7 / 5.0 – 3 customer ratings)
Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov’s algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.
€96.29
payment methods

Table of Content

Preface.- List of Principal results.- Introduction.- Conformal prediction.- Classification with conformal predictors.-Modifications of conformal predictors.- Probabilistic prediction I: impossibility results.- Probabilistic prediction II: Venn predictors.- Beyond exchangeability.- On-line compression modeling I: conformal prediction.- On-line compression modeling II: Venn prediction.- Perspectives and contrasts.- Appendix A: Probability theory.- Appendix B: Data sets.- Appendix C: FAQ.- Notation.- References.- Index
Language English ● Format PDF ● Pages 324 ● ISBN 9780387250618 ● File size 16.6 MB ● Age 02-99 years ● Publisher Springer US ● City NY ● Country US ● Published 2005 ● Downloadable 24 months ● Currency EUR ● ID 2144107 ● Copy protection Adobe DRM
Requires a DRM capable ebook reader

More ebooks from the same author(s) / Editor

12084 Ebooks in this category