Szkło powiększające
Search Loader

Giovanni Motta & Francesco Rizzo 
Hyperspectral Data Compression 

Wsparcie
Hyperspectral Data Compression provides a survey of recent results in the field of compression of remote sensed 3D data, with a particular interest in hyperspectral imagery. Chapter 1 addresses compression architecture, and reviews and compares compression methods. Chapters 2 through 4 focus on lossless compression (where the decompressed image must be bit for bit identical to the original). Chapter 5, contributed by the editors, describes a lossless algorithm based on vector quantization with extensions to near lossless and possibly lossy compression for efficient browning and pure pixel classification. Chapter 6 deals with near lossless compression while. Chapter 7 considers lossy techniques constrained by almost perfect classification. Chapters 8 through 12 address lossy compression of hyperspectral imagery, where there is a tradeoff between compression achieved and the quality of the decompressed image. Chapter 13 examines artifacts that can arise from lossy compression.
€149.79
Metody Płatności

Spis treści

An Architecture for the Compression of Hyperspectral Imagery.- Lossless Predictive Compression of Hyperspectral Images.- Lossless Hyperspectral Image Compression via Linear Prediction.- Lossless Compression of Ultraspectral Sounder Data.- Locally Optimal Partitioned Vector Quantization of Hyperspectral Data.- Near-Lossless Compression of Hyperspectral Imagery Through Crisp/Fuzzy Adaptive DPCM.- Joint Classification and Compression of Hyperspectral Images.- Predictive Coding of Hyperspectral Images.- Coding of Hyperspectral Imagery with Trellis-Coded Quantization.- Three-Dimensional Wavelet-Based Compression of Hyperspectral Images.- Spectral/Spatial Hyperspectral Image Compression.- Compression of Earth Science Data with JPEG2000.- Spectral Ringing Artifacts in Hyperspectral Image Data Compression.

O autorze

James A. Storer is Chair of the IEEE Data Compression Conference.
Język Angielski ● Format PDF ● Strony 418 ● ISBN 9780387286006 ● Rozmiar pliku 47.7 MB ● Redaktor Giovanni Motta & Francesco Rizzo ● Wydawca Springer US ● Miasto NY ● Kraj US ● Opublikowany 2006 ● Do pobrania 24 miesięcy ● Waluta EUR ● ID 2144483 ● Ochrona przed kopiowaniem Społeczny DRM

Więcej książek elektronicznych tego samego autora (ów) / Redaktor

15 742 Ebooki w tej kategorii